B. Pharmacy 1st Semester - Human Anatomy and Physiology 1 Notes

UNIT - 3

BODY FLUIDS AND BLOOD

Points to be covered in this topic

- → 1 BODY FLUIDS
- → 2 COMPOSITION AND FUNCTIONS OF BLOOD
- → 3. HEMOPOIESIS
- → 4. FORMATION OF HEMOGLOBIN
- → 5. ANEMIA
- → 6. MECHANISMS OF COAGULATION
- → 7. BLOOD GROUPING
- → 8. Rh FACTORS
- → 9. TRANSFUSION, ITS SIGNIFICANCE AND DISORDERS OF BLOOD
- → 10. RETICULO ENDOTHELIAL SYSTEM

BODY FLUIDS

INTRODUCTION

- Body fluids are aqueous solutions containing dissolved chemicals that are found inside the cells, around the cells, and throughout the body.
- The human body is approximately 60% water by weight, with variations depending on age, gender, and body composition.

 Body fluids are essential for maintaining homeostasis, transporting nutrients, removing waste products, and facilitating various physiological processes.

CLASSIFICATION OF BODY FLUIDS

Body fluids can be classified into two major compartments:

1. Intracellular Fluid (ICF)

- The fluid found inside the cells of the body.
- Comprises approximately 40% of total body weight.
- Contains high concentrations of potassium, phosphates, and proteins.
- The composition is carefully regulated by the cell membrane and various transport mechanisms.

2. Extracellular Fluid (ECF)

- The fluid found outside the cells.
- Comprises approximately 20% of total body weight.
- Contains high concentrations of sodium and chloride.
- Further divided into:

a) Interstitial Fluid:

- The fluid that surrounds and bathes the body cells.
- Makes up about 15% of total body weight.
- Acts as a medium for exchange of substances between blood and cells.

b) Intravascular Fluid (Plasma):

- The liquid portion of blood.
- Makes up about 5% of total body weight.
- Contains proteins, electrolytes, nutrients, and waste products.

c) Transcellular Fluid:

- Specialized body fluids such as cerebrospinal fluid, synovial fluid, and digestive secretions.
- Makes up about 1-2% of total body weight.

♦ COMPOSITION AND FUNCTIONS OF BLOOD

INTRODUCTION

- Blood is a specialized connective tissue that circulates throughout the body.
- It is a liquid tissue consisting of cells suspended in plasma.
- The average adult has approximately 5-6 liters of blood.
- Blood accounts for about 7-8% of total body weight.

COMPOSITION OF BLOOD

Blood consists of two main components:

1. Plasma (55% of blood volume)

- The liquid portion of blood.
- Composed of approximately 90% water and 10% solutes.

Components of Plasma:

- Water (90%): Acts as a solvent for various substances.
- Plasma Proteins (7%):
 - Albumin: Maintains osmotic pressure and transports substances
 - Globulins: Include antibodies and transport proteins
 - Fibrinogen: Essential for blood clotting
- Electrolytes (1%): Sodium, potassium, calcium, chloride, bicarbonate
- Nutrients: Glucose, amino acids, fatty acids, vitamins
- Waste Products: Urea, creatinine, bilirubin
- Hormones and Enzymes: Various regulatory substances

2. Formed Elements (45% of blood volume)

a) Red Blood Cells (Erythrocytes):

- Most numerous blood cells (4.5-5.5 million per μL).
- Biconcave disc shape without nucleus in mammals.
- Contain hemoglobin for oxygen transport.
- Lifespan of approximately 120 days.

b) White Blood Cells (Leukocytes):

- Fewer in number (4,000-10,000 per μL).
- Contain nucleus and are involved in immune defense.
- Types include neutrophils, lymphocytes, monocytes, eosinophils, and basophils.

c) Platelets (Thrombocytes):

- Small cell fragments (150,000-400,000 per μL).
- Essential for blood clotting and hemostasis.
- Lifespan of approximately 7-10 days.

FUNCTIONS OF BLOOD

1. Transportation Function

- Oxygen Transport: Red blood cells carry oxygen from lungs to tissues via hemoglobin.
- Carbon Dioxide Transport: Blood carries CO₂ from tissues to lungs for elimination.
- Nutrient Transport: Carries glucose, amino acids, fatty acids, and vitamins from digestive system to cells.
- Waste Transport: Transports metabolic waste products to excretory organs.
- Hormone Transport: Carries hormones from endocrine glands to target organs.

2. Regulatory Function

- **pH Regulation:** Buffer systems maintain blood pH between 7.35-7.45.
- Temperature Regulation: Blood distributes heat throughout the body.
- Fluid Balance: Helps maintain proper water distribution between body compartments.

3. Protective Function

- Immune Defense: White blood cells protect against pathogens and foreign substances.
- Blood Clotting: Prevents excessive blood loss through hemostasis.
- Antibody Production: Plasma contains antibodies for specific immunity.

HEMOPOIESIS

INTRODUCTION

- Hemopoiesis (or hematopoiesis) is the process of blood cell formation.
- It occurs primarily in the bone marrow in adults.
- All blood cells originate from pluripotent hematopoietic stem cells.

SITES OF HEMOPOIESIS

During Development:

- Embryonic Period: Yolk sac (first 2-3 weeks)
- **Fetal Period:** Liver and spleen (3-7 months)
- Late Fetal/Postnatal: Bone marrow becomes primary site

In Adults:

 Red Bone Marrow: Primary site in flat bones (sternum, ribs, vertebrae, pelvis, skull) Yellow Marrow: Contains fat cells and can revert to red marrow if needed

PROCESS OF HEMOPOIESIS

Stem Cell Hierarchy:

- Pluripotent Stem Cells: Can differentiate into all blood cell types
- Multipotent Progenitor Cells: Committed to specific cell lineages
- Precursor Cells: Undergo maturation to become mature blood cells

Major Cell Lineages:

- Erythroid Lineage: Produces red blood cells
- Myeloid Lineage: Produces neutrophils, eosinophils, basophils, monocytes, and platelets
- Lymphoid Lineage: Produces lymphocytes (T cells, B cells, NK cells)

REGULATION OF HEMOPOIESIS

- Growth Factors: Erythropoietin, colony-stimulating factors, interleukins
- Hormones: Thyroid hormones, androgens, growth hormone
- **Nutritional Factors:** Iron, vitamin B₁₂, folic acid, protein
- Feedback Mechanisms: Oxygen levels, blood cell counts

FORMATION OF HEMOGLOBIN

INTRODUCTION

- Hemoglobin is the iron-containing protein in red blood cells.
- It is responsible for oxygen transport from lungs to tissues.
- Normal hemoglobin levels: Men 14-16 g/dL, Women 12-14 g/dL.

STRUCTURE OF HEMOGLOBIN

- **Globin:** Four polypeptide chains (2 α -chains and 2 β -chains)
- Heme: Four iron-containing porphyrin rings
- Each hemoglobin molecule can carry four oxygen molecules

SYNTHESIS OF HEMOGLOBIN

Site of Synthesis:

- Begins in erythroblasts in the bone marrow
- Continues during reticulocyte stage
- Completed before mature RBC formation

Steps in Hemoglobin Synthesis:

1. Heme Synthesis:

- Occurs in mitochondria and cytoplasm of erythroblasts
- Requires iron, vitamin B₆, and various enzymes
- Key steps involve:
 - Formation of δ-aminolevulinic acid (ALA)
 - Condensation to form porphobilinogen
 - Formation of protoporphyrin IX
 - Insertion of iron to form heme

2. Globin Synthesis:

- Occurs on ribosomes in the cytoplasm
- α-globin chains synthesized continuously
- β-globin chains synthesized in balanced amounts
- Assembly of α and β chains with heme groups

Requirements for Hemoglobin Formation:

- Iron: Essential component of heme group
- Vitamin B₁₂: Required for DNA synthesis in erythroblasts
- Folic Acid: Necessary for DNA synthesis and cell division
- Vitamin B₆: Cofactor in heme synthesis
- Protein: Source of amino acids for globin chains
- Copper: Required for iron absorption and utilization

% ANEMIA

DEFINITION

- Anemia is a condition characterized by a decrease in the number of red blood cells or hemoglobin concentration below normal levels.
- Results in reduced oxygen-carrying capacity of blood.
- Defined as hemoglobin levels below 12 g/dL in women and 13 g/dL in men.

CLASSIFICATION OF ANEMIA

A. Based on Cell Size (Morphological):

1. Microcytic Anemia (MCV < 80 fL):

- Small red blood cells
- Usually due to iron deficiency or thalassemia

2. Normocytic Anemia (MCV 80-100 fL):

- Normal-sized red blood cells
- Often due to chronic disease or blood loss

3. Macrocytic Anemia (MCV > 100 fL):

- Large red blood cells
- Usually due to vitamin B₁₂ or folate deficiency

B. Based on Cause (Etiological):

1. Iron Deficiency Anemia:

- Most common type of anemia worldwide
- Caused by inadequate iron intake, absorption, or excessive loss
- Characterized by microcytic, hypochromic red blood cells
- Symptoms include fatigue, weakness, pale skin, brittle nails

2. Megaloblastic Anemia:

- Due to vitamin B₁₂ or folic acid deficiency
- Results in large, immature red blood cells
- DNA synthesis is impaired while RNA synthesis continues

• Can cause neurological symptoms if due to B₁₂ deficiency

3. Hemolytic Anemia:

- Results from increased destruction of red blood cells
- Can be inherited (sickle cell disease, thalassemia) or acquired
- Bone marrow increases production but cannot compensate
- May cause jaundice due to increased bilirubin

4. Aplastic Anemia:

- Bone marrow failure resulting in decreased production of all blood cells
- Can be congenital or acquired (drugs, radiation, infections)
- Requires bone marrow transplantation in severe cases

5. Chronic Disease Anemia:

- Associated with chronic infections, inflammatory conditions, or malignancies
- Results from impaired iron utilization and decreased erythropoietin response
- Usually normocytic and normochromic

SYMPTOMS OF ANEMIA

- **General:** Fatigue, weakness, shortness of breath
- Cardiovascular: Rapid heartbeat, chest pain, dizziness
- Integumentary: Pale skin, brittle nails, hair loss

• Neurological: Headaches, difficulty concentrating, restless legs

MECHANISMS OF COAGULATION

INTRODUCTION

- Blood coagulation (clotting) is a complex process that prevents excessive bleeding when blood vessels are injured.
- It involves a cascade of enzymatic reactions leading to fibrin formation.
- The process must be carefully regulated to prevent inappropriate clotting.

COMPONENTS OF HEMOSTASIS

1. Vascular Response

- Immediate vasoconstriction reduces blood flow to injured area
- Mediated by smooth muscle contraction and local factors
- Helps limit blood loss and brings clotting factors into contact

2. Platelet Plug Formation (Primary Hemostasis)

- Platelet Adhesion: Platelets stick to exposed collagen at injury site
- Platelet Activation: Release of granule contents (ADP, thromboxane A₂)
- Platelet Aggregation: Formation of unstable platelet plug
- Process occurs within seconds of injury

3. Blood Coagulation (Secondary Hemostasis)

Formation of stable fibrin clot through coagulation cascade

COAGULATION CASCADE

Classical Pathway Division:

Intrinsic Pathway (Contact Activation):

- Activated by contact with negatively charged surfaces
- Involves factors XII, XI, IX, and VIII
- Longer process but amplifies coagulation response

Extrinsic Pathway (Tissue Factor):

- Activated by tissue factor released from damaged tissues
- Involves factor VII
- Rapid initiation of coagulation

Common Pathway:

- Both pathways converge to activate factor X
- Leads to thrombin formation and fibrin polymerization

Modern Understanding - Cell-Based Model:

1. Initiation Phase:

- Tissue factor (TF) exposed at injury site
- TF binds to factor VIIa forming TF-VIIa complex
- Activates factors IX and X on TF-bearing cells

2. Amplification Phase:

- Small amounts of thrombin generated
- Activates cofactors V, VIII, and XI on platelet surfaces
- Prepares for large-scale thrombin generation

3. Propagation Phase:

- Massive thrombin generation on activated platelet surfaces
- Factor Xa-Va complex (prothrombinase) converts prothrombin to thrombin
- Thrombin converts fibrinogen to fibrin

COAGULATION FACTORS

Factor	Name	Function
[Fibrinogen	Converted to fibrin
II	Prothrombin	Converted to thrombin
III	Tissue Factor	Initiates extrinsic pathway
IV	Calcium	Cofactor for many reactions
V	Proaccelerin	Cofactor with Xa
VII	Proconvertin	Initiates extrinsic pathway
VIII	Antihemophilic Factor	Cofactor with IXa
IX	Christmas Factor	Activates factor X
X	Stuart Factor	Activates prothrombin
XI	Plasma Thromboplastin Antecedent	Activates factor IX
XII	Hageman Factor	Contact activation
XIII	Fibrin Stabilizing Factor	Cross-links fibrin
4		•

REGULATION OF COAGULATION

- Natural Anticoagulants: Antithrombin III, protein C, protein S
- Fibrinolytic System: Dissolves clots through plasmin action
- Endothelial Factors: Prostacyclin, nitric oxide prevent inappropriate clotting

BLOOD GROUPING

INTRODUCTION

- Blood grouping is the classification of blood based on the presence or absence of specific antigens on red blood cell surfaces.
- These antigens are inherited genetic markers that determine blood compatibility.
- Knowledge of blood groups is essential for safe blood transfusions and organ transplantation.

ABO BLOOD GROUP SYSTEM

Discovery and Basis:

- Discovered by Karl Landsteiner in 1901
- Based on presence of A and B antigens on red blood cells
- Corresponding antibodies (anti-A, anti-B) present in plasma

Blood Types:

Type A:

- A antigens on red blood cells
- Anti-B antibodies in plasma
- Can receive blood from A and O donors
- Can donate to A and AB recipients

Type B:

- B antigens on red blood cells
- Anti-A antibodies in plasma
- Can receive blood from B and O donors
- Can donate to B and AB recipients

Type AB (Universal Recipient):

- Both A and B antigens on red blood cells
- No anti-A or anti-B antibodies in plasma
- Can receive blood from all ABO types
- Can only donate to AB recipients

Type O (Universal Donor):

- No A or B antigens on red blood cells
- Both anti-A and anti-B antibodies in plasma
- Can only receive blood from O donors
- Can donate to all ABO types

Genetics of ABO System:

Controlled by three alleles: I^A, I^B, and i

- I^A codes for A antigen, I^B codes for B antigen, i codes for no antigen
- Inheritance pattern follows Mendelian genetics

OTHER BLOOD GROUP SYSTEMS

Rh Blood Group System:

- Second most important blood group system
- Based on presence of Rh(D) antigen
- Rh-positive: D antigen present
- Rh-negative: D antigen absent

MNS System:

- Based on M and N antigens
- Less clinically significant than ABO and Rh

Kell System:

- Can cause severe hemolytic disease
- Important in some transfusion reactions

Rh FACTORS

INTRODUCTION

- The Rh (Rhesus) blood group system is the second most important blood group system after ABO.
- Named after the Rhesus monkey in which it was first discovered.
- The most significant antigen in this system is the D antigen.

Rh ANTIGENS AND PHENOTYPES

Rh-Positive (Rh+):

- Presence of D antigen on red blood cells
- Approximately 85% of the population
- Genotypes: DD or Dd
- Do not naturally produce anti-D antibodies

Rh-Negative (Rh-):

- Absence of D antigen on red blood cells
- Approximately 15% of the population
- Genotype: dd
- Can develop anti-D antibodies upon exposure

CLINICAL SIGNIFICANCE

Rh Incompatibility:

- Occurs when Rh-negative person is exposed to Rh-positive blood
- Can happen through transfusion or pregnancy
- Results in production of anti-D antibodies

Hemolytic Disease of the Newborn (HDN):

- First Pregnancy: Rh-negative mother with Rh-positive fetus
 - Usually no problems as maternal and fetal blood don't mix significantly

- Some sensitization may occur during delivery
- Subsequent Pregnancies: If mother is now sensitized
 - Anti-D antibodies cross placenta and attack fetal RBCs
 - Can cause severe anemia, jaundice, and fetal death

Prevention of Rh Sensitization:

- RhoGAM (Anti-D Immunoglobulin):
 - Given to Rh-negative mothers at 28 weeks of pregnancy
 - Given within 72 hours after delivery of Rh-positive baby
 - Prevents maternal sensitization to Rh antigen
 - Also given after miscarriage, abortion, or invasive procedures

GENETICS OF Rh SYSTEM

- More complex than initially thought
- Involves multiple genes and antigens
- D antigen is most immunogenic
- Inheritance follows Mendelian patterns

♠ TRANSFUSION, ITS SIGNIFICANCE AND DISORDERS OF BLOOD

BLOOD TRANSFUSION

Definition and Purpose:

- Blood transfusion is the transfer of blood or blood components from a donor to a recipient.
- Used to replace blood loss, treat anemia, or provide specific blood components.
- Can be life-saving in cases of severe blood loss or certain medical conditions.

Types of Blood Transfusion:

1. Whole Blood Transfusion:

- Contains all blood components
- Rarely used except in massive blood loss
- Volume: 450-500 mL per unit

2. Component Transfusion:

- Red Blood Cell Concentrate: For anemia or blood loss
- Fresh Frozen Plasma: For clotting factor deficiencies
- Platelet Concentrate: For thrombocytopenia or platelet dysfunction
- Cryoprecipitate: For fibrinogen deficiency or hemophilia

Compatibility Testing:

1. ABO Compatibility:

- Donor and recipient must be ABO compatible
- Cross-matching prevents hemolytic reactions

2. Rh Compatibility:

- Especially important for Rh-negative recipients
- Rh-positive blood should not be given to Rh-negative recipients

3. Cross-Matching:

- Direct testing of donor cells with recipient serum
- Detects unexpected antibodies
- Major cross-match: Donor cells + recipient serum
- Minor cross-match: Recipient cells + donor serum

SIGNIFICANCE OF BLOOD TRANSFUSION

Medical Benefits:

- Life-Saving: Essential in trauma, surgery, and severe anemia
- Treatment of Blood Disorders: Thalassemia, sickle cell disease, hemophilia
- Support During Cancer Treatment: Chemotherapy-induced cytopenias
- Surgical Procedures: Major operations requiring blood replacement

Social and Ethical Aspects:

- Voluntary blood donation saves lives
- Blood banking systems ensure adequate supply
- Ethical considerations in allocation and access

BLOOD TRANSFUSION REACTIONS

Immediate Reactions:

1. Acute Hemolytic Reaction:

- Most serious type of reaction
- Due to ABO incompatibility
- Symptoms: Fever, chills, back pain, hemoglobinuria
- Can lead to kidney failure and death

2. Febrile Non-Hemolytic Reaction:

- Most common type of reaction
- Due to antibodies against white blood cells
- Symptoms: Fever, chills, headache
- · Usually mild and self-limiting

3. Allergic Reactions:

- Due to plasma proteins in transfused blood
- Range from mild urticaria to severe anaphylaxis
- Treated with antihistamines or epinephrine

4. Transfusion-Related Acute Lung Injury (TRALI):

- Acute respiratory distress within 6 hours
- Due to antibodies against neutrophils
- Can be life-threatening

Delayed Reactions:

1. Delayed Hemolytic Reaction:

- Occurs days to weeks after transfusion
- Due to anamnestic antibody response
- Usually milder than acute reactions

2. Iron Overload:

- Results from multiple transfusions
- Can damage liver, heart, and other organs
- Requires iron chelation therapy

3. Graft-vs-Host Disease:

- Rare but serious complication
- Transfused lymphocytes attack recipient tissues
- Prevented by irradiation of blood products

INFECTIOUS DISEASES AND BLOOD SAFETY

Screening Tests:

- Viral Infections: HIV, Hepatitis B and C, HTLV
- Bacterial Contamination: Especially in platelet products
- Parasitic Infections: Malaria, Chagas disease (in endemic areas)

Safety Measures:

- Donor screening and questionnaires
- Laboratory testing of donated blood
- Nucleic acid testing for viral infections

- Bacterial culture of platelet products
- Pathogen reduction technologies

RETICULO ENDOTHELIAL SYSTEM

INTRODUCTION

- The reticuloendothelial system (RES), now known as the mononuclear phagocyte system (MPS), is a network of cells distributed throughout the body.
- These cells are involved in phagocytosis, immune responses, and tissue maintenance.
- The system includes various types of macrophages and dendritic cells.

COMPONENTS OF THE SYSTEM

Fixed Macrophages:

- Liver: Kupffer cells filter blood and remove old RBCs
- Spleen: Splenic macrophages remove aged blood cells and pathogens
- **Lymph Nodes:** Resident macrophages filter lymph and process antigens
- Lungs: Alveolar macrophages remove particles and pathogens from airways
- Bone Marrow: Macrophages support hematopoiesis and remove cellular debris
- Brain: Microglial cells immune surveillance and synaptic pruning

 Connective Tissue: Histiocytes - tissue maintenance and wound healing

Mobile Macrophages:

- Blood Monocytes: Circulate and migrate to tissues when needed
- Inflammatory Macrophages: Recruited to sites of inflammation or infection

FUNCTIONS OF THE RES

1. Phagocytosis:

- Cellular Debris Removal: Eliminate dead and dying cells
- Pathogen Elimination: Engulf bacteria, viruses, and other microorganisms
- Foreign Material Clearance: Remove carbon particles, dust, and other foreign substances

2. Blood Cell Destruction:

- Aged RBC Removal: Spleen and liver macrophages remove old red blood cells
- Hemoglobin Breakdown: Convert hemoglobin to bilirubin for excretion
- Iron Recycling: Salvage iron from destroyed red blood cells for reuse

3. Immune Functions:

• Antigen Presentation: Process and present antigens to lymphocytes

- Cytokine Production: Release inflammatory mediators and immune regulators
- Complement Activation: Participate in complement cascade

4. Metabolic Functions:

- Lipid Metabolism: Store and metabolize lipids
- Iron Storage: Maintain body iron stores as ferritin and hemosiderin
- Hormone Metabolism: Process various hormones

ORGANS OF THE RES

Spleen:

- Structure: Red pulp (blood filtration) and white pulp (immune function)
- Functions: Blood filtration, immune surveillance, blood cell storage
- Clinical Significance: Splenomegaly in various diseases

Liver:

- **Kupffer Cells:** Largest population of fixed macrophages
- Functions: Detoxification, blood filtration, bile production
- Role in RES: Remove bacteria and toxins from portal circulation

Bone Marrow:

- **Stromal Macrophages:** Support hematopoiesis
- Iron Storage: Central iron recycling facility
- Cell Production: Generate new macrophages and other blood cells

⊘ LYMPHATIC SYSTEM

Points to be covered in this topic

- → 1. LYMPHATIC ORGANS AND TISSUES
- → 2 LYMPHATIC VESSELS
- → 3. LYMPH CIRCULATION
- → 4. FUNCTIONS OF LYMPHATIC SYSTEM

m LYMPHATIC ORGANS AND TISSUES

INTRODUCTION

- The lymphatic system is a network of tissues, vessels, and organs that help maintain body fluid balance and defend against infections.
- It consists of primary and secondary lymphoid organs that work together to produce and mature immune cells.
- The system is closely integrated with the cardiovascular and immune systems.

PRIMARY LYMPHOID ORGANS

1. Bone Marrow 🗸

Structure:

- Soft tissue inside hollow bones
- Contains hematopoietic stem cells and stromal cells
- Two types: red marrow (active) and yellow marrow (inactive)

Functions:

- **B Cell Development:** Site of B lymphocyte maturation
- Hematopoiesis: Production of all blood cell types
- Stem Cell Niche: Maintains pluripotent stem cell populations
- Immune Memory: Houses long-lived plasma cells

Location:

- Flat bones: sternum, ribs, vertebrae, pelvis, skull
- Ends of long bones in adults
- Throughout skeleton in children

2. Thymus

Structure:

- Located in the mediastinum, anterior to the heart
- Consists of two lobes divided into cortex and medulla
- Contains epithelial cells, dendritic cells, and thymocytes

Functions:

- T Cell Maturation: Site where T lymphocytes develop and mature
- Self-Tolerance: Eliminates T cells that react to self-antigens
- Hormone Production: Secretes thymosin and other thymic hormones
- Immune Education: Teaches T cells to recognize self vs. non-self

Age-Related Changes:

- Largest during childhood and adolescence
- Gradually involutes (shrinks) with age
- Replaced by adipose tissue in adults
- Maintains some function throughout life

SECONDARY LYMPHOID ORGANS

1. Lymph Nodes 🔗

Structure:

- Small, bean-shaped organs along lymphatic vessels
- Surrounded by fibrous capsule with trabeculae
- Contains cortex (B cell areas) and medulla (T cell areas)
- Specialized areas: germinal centers for B cell activation

Distribution:

- Cervical: Neck region drain head and neck
- **Axillary:** Armpit region drain arms and chest wall
- **Inquinal:** Groin region drain legs and lower abdomen
- **Mesenteric:** Abdominal cavity drain intestines
- Mediastinal: Chest cavity drain lungs and heart

Functions:

- **Filtration:** Remove pathogens and foreign particles from lymph
- **Immune Activation:** Site of antigen presentation and lymphocyte activation

- Antibody Production: B cells differentiate into plasma cells
- Immune Memory: Generate memory B and T cells

2. Spleen 🐕

Structure:

- Red Pulp: Network of sinusoids for blood filtration
 - Contains macrophages and red blood cells
 - Removes old and damaged red blood cells
- White Pulp: Lymphoid tissue around arterioles
 - Contains T cells, B cells, and antigen-presenting cells
 - Sites of immune activation

Functions:

- Blood Filtration: Removes old RBCs, platelets, and pathogens
- Immune Surveillance: Monitors blood for foreign antigens
- Blood Storage: Stores platelets and some red blood cells
- Hematopoiesis: Can resume blood cell production if needed

Clinical Significance:

- Splenomegaly: Enlargement due to various diseases
- Hypersplenism: Overactive destruction of blood cells
- Asplenia: Increased susceptibility to encapsulated bacteria

3. Mucosa-Associated Lymphoid Tissue (MALT)

Components:

- GALT (Gut-Associated): Peyer's patches, appendix, isolated lymphoid follicles
- BALT (Bronchus-Associated): Lymphoid tissue in respiratory tract
- NALT (Nasal-Associated): Adenoids and tonsillar tissue
- Skin-Associated: Lymphoid tissue in skin and mucous membranes

Structure:

- Collections of lymphoid cells without distinct capsules
- Located beneath epithelial surfaces
- Contains specialized antigen-sampling cells (M cells)

Functions:

- First Line Defense: Protects mucosal surfaces from pathogens
- Local Immunity: Produces secretory IgA antibodies
- Antigen Sampling: M cells transport antigens from lumen
- Tolerance Induction: Prevents immune reactions to harmless antigens

LYMPHOID TISSUES

Tonsils 👄

Types:

- Palatine Tonsils: Located on sides of throat
- Pharyngeal Tonsil (Adenoids): Located in nasopharynx
- Lingual Tonsils: Located at base of tongue

Functions:

- Guard against inhaled and ingested pathogens
- Initiate immune responses in upper respiratory tract
- Produce antibodies against common pathogens

Appendix 🐐

Structure:

- Small, finger-like projection from cecum
- Contains abundant lymphoid tissue
- Part of GALT system

Functions:

- Immune surveillance of intestinal contents
- Reservoir for beneficial gut bacteria
- May help establish normal gut microbiome

LYMPHATIC VESSELS

INTRODUCTION

- Lymphatic vessels form a one-way drainage system that returns excess tissue fluid to the bloodstream.
- They begin as lymphatic capillaries and gradually merge into larger vessels.

 The system parallels the venous system but has important structural and functional differences.

STRUCTURE OF LYMPHATIC VESSELS

1. Lymphatic Capillaries

Structure:

- Smallest vessels in the lymphatic system
- Single layer of endothelial cells with overlapping edges
- No basement membrane, allowing easy fluid entry
- Blind-ended tubes that begin in tissue spaces
- Anchored to surrounding tissues by anchoring filaments

Specialized Types:

- Lacteals: Lymphatic capillaries in intestinal villi
 - Absorb dietary fats and fat-soluble vitamins
 - Transport chylomicrons from intestine
- Initial Lymphatics: First collecting vessels from capillaries
 - Have primitive valves to prevent backflow

Distribution:

- Present in most tissues except:
 - Central nervous system (has glymphatic system)
 - Bone marrow
 - Cartilage

- Cornea and lens of eye
- Placenta

2. Collecting Lymphatic Vessels 🗟

Structure:

- Larger than capillaries with distinct layers
 - Intima: Endothelial lining with one-way valves
 - Media: Smooth muscle layer for propulsion
 - Adventitia: Connective tissue outer layer
- Valves similar to those in veins prevent backflow
- Segments between valves called lymphangions

Functions:

- Transport lymph from capillaries to lymph nodes
- Undergo rhythmic contractions (lymphatic pump)
- Respond to various stimuli (stretch, inflammatory mediators)

3. Lymphatic Trunks 🖡

Major Trunks:

- Jugular Trunks: Drain head and neck
- Subclavian Trunks: Drain upper limbs
- Bronchomediastinal Trunks: Drain thoracic organs
- Intestinal Trunk: Drains digestive organs
- Lumbar Trunks: Drain lower limbs and pelvis

Characteristics:

- Formed by convergence of collecting vessels
- Have well-developed muscle layers
- May pass through multiple lymph node groups

4. Lymphatic Ducts **F**

Right Lymphatic Duct:

- Formation: Junction of right jugular, subclavian, and bronchomediastinal trunks
- Drainage Area: Right side of head, neck, thorax, and right upper limb
- Termination: Right subclavian vein at junction with internal jugular vein
- Length: Approximately 1-2 cm

Thoracic Duct:

- Formation: Begins at cisterna chyli (L1-L2 level)
- Course: Ascends through posterior mediastinum
- **Drainage Area:** Rest of body (about 75% of lymph)
- Termination: Left subclavian vein at junction with internal jugular vein
- **Length:** Approximately 38-45 cm (largest lymphatic vessel)

LYMPHATIC VESSEL FUNCTION

Fluid Transport:

- Return excess interstitial fluid to circulation
- Maintain fluid balance between blood and tissues
- Transport amounts to 2-4 liters per day

Protein Recovery:

- Return leaked plasma proteins to circulation
- Prevent accumulation of proteins in tissues
- Maintain oncotic pressure gradients

Fat Absorption:

- Lacteals absorb dietary lipids from intestine
- Transport fat-soluble vitamins (A, D, E, K)
- Deliver nutrients to systemic circulation

EN LYMPH CIRCULATION

INTRODUCTION

- Lymph circulation is the movement of lymph through the lymphatic system.
- Unlike blood circulation, lymphatic circulation is unidirectional (toward the heart).
- The system lacks a central pump like the heart, relying on various mechanisms for flow.

COMPOSITION OF LYMPH

Normal Lymph Composition:

- Water: 95% of lymph volume
- Proteins: Lower concentration than plasma (2-5 g/dL)
 - Albumin, globulins, fibrinogen
 - Concentration varies by location
- Lipids: Higher after meals, especially from intestine
- Electrolytes: Similar to interstitial fluid
- **Cells:** Mainly lymphocytes (2,000-20,000/μL)
- Other: Enzymes, hormones, waste products

Variations in Composition:

• Thoracic Duct Lymph: Mixed lymph from entire body

er

- Intestinal Lymph: High in lipids after meals (chyle)
- Liver Lymph: High in protein content
- Peripheral Lymph: Lower protein, mainly tissue fluid

MECHANISMS OF LYMPH FLOW

1. Intrinsic Mechanisms (Lymphatic Pump) 6

Spontaneous Contractions:

- Smooth muscle in collecting vessels contracts rhythmically
- Frequency: 1-10 contractions per minute
- Each lymphangion acts as individual pump unit
- Coordinated contractions propel lymph forward

Valve Function:

- One-way valves prevent backflow
- Open during forward flow, close during reverse pressure
- Ensure unidirectional movement toward venous system

2. Extrinsic Mechanisms 🏃

Skeletal Muscle Pump:

- Muscle contractions compress lymphatic vessels
- Alternating compression and relaxation propels lymph
- Most effective during physical activity
- Important for lymph flow from extremities

Respiratory Pump:

- Breathing creates pressure changes in thoracic cavity
- Inspiration: Decreased thoracic pressure draws lymph upward
- Expiration: Increased pressure helps empty thoracic duct
- Deep breathing enhances lymphatic drainage

Arterial Pulsations:

- Pulsating arteries adjacent to lymphatics aid flow
- Particularly important in areas with close arterial-lymphatic proximity
- Provides rhythmic external compression

Gravitational Forces:

- Assist flow from upper body regions
- Oppose flow from lower extremities
- Overcome by muscle pump and vessel contractions

FACTORS AFFECTING LYMPH FLOW

Factors that Increase Flow:

- Physical Activity: Enhances muscle and respiratory pumps
- Massage: External compression aids drainage
- **Heat:** Vasodilation and increased tissue metabolism
- Increased Capillary Pressure: More fluid filtration
- Inflammation: Increased vascular permeability

Factors that Decrease Flow:

- Immobility: Reduced muscle pump activity
- Cold: Vasoconstriction and reduced muscle activity
- Dehydration: Decreased fluid available for lymph formation
- Lymphatic Obstruction: Tumors, fibrosis, or infections
- Heart Failure: Increased venous pressure impedes drainage

LYMPH FLOW RATES

Normal Flow Rates:

- Total Daily Flow: 2-4 liters per day
- Thoracic Duct: 1-3 mL/minute at rest
- Right Lymphatic Duct: 0.1-0.5 mL/minute

• Increases: Up to 10-fold during exercise or inflammation

Regional Variations:

- Intestinal: Highest flow rate, especially postprandial
- Hepatic: High protein content, significant volume
- Peripheral: Lower flow rates but important for tissue drainage

• FUNCTIONS OF LYMPHATIC SYSTEM

INTRODUCTION

- The lymphatic system performs multiple vital functions essential for health and survival.
- These functions integrate fluid balance, immune defense, and nutrient absorption.
- Dysfunction of the lymphatic system can lead to serious health consequences.

1. FLUID HOMEOSTASIS

Interstitial Fluid Balance:

- Fluid Return: Returns 2-4 liters of excess interstitial fluid daily to circulation
- Starling Forces: Balances hydrostatic and oncotic pressures
- Edema Prevention: Prevents tissue swelling under normal conditions
- Volume Regulation: Helps maintain blood volume and pressure

Mechanism of Fluid Balance:

- Capillary filtration creates interstitial fluid
- Most fluid reabsorbed at venous end of capillaries
- Excess fluid (10-20%) collected by lymphatic capillaries
- Returned to venous circulation via thoracic and right lymphatic ducts

Clinical Significance:

- Lymphedema: Swelling due to lymphatic obstruction or dysfunction
- **Primary:** Congenital malformations of lymphatic system
- Secondary: Acquired due to surgery, radiation, infection, or trauma

2. IMMUNE FUNCTION %

Immune Surveillance:

- Antigen Collection: Lymphatics transport antigens from tissues to lymph nodes
- Pathogen Filtering: Lymph nodes filter and trap bacteria, viruses, and toxins
- Immune Cell Transport: Carries lymphocytes between immune organs
- Memory Formation: Sites for generating immunological memory

Components of Immune Function:

Cellular Immunity:

T lymphocytes mature in thymus

- Circulate through lymphatic system
- Recognize and eliminate infected or abnormal cells
- Coordinate immune responses

Humoral Immunity:

- B lymphocytes mature in bone marrow
- Activated in secondary lymphoid organs
- Differentiate into plasma cells producing antibodies
- Memory B cells provide long-term protection

Innate Immunity:

- Macrophages in lymph nodes phagocytose pathogens
- Dendritic cells process and present antigens
- Natural killer cells eliminate infected cells
- Complement activation and inflammatory responses

Immune Responses in Lymphoid Organs:

Primary Function	Key Cells	Immune Response
Antigen filtration	B cells, T cells, Macrophages	Adaptive immunity
Blood filtration	B cells, T cells, Macrophages	Systemic immunity
Mucosal protection	B cells, T cells, Plasma cells	Local immunity
T cell education	Thymocytes, Epithelial cells	Self-tolerance
	Antigen filtration Blood filtration Mucosal protection	FunctionB cells, T cells, MacrophagesBlood filtrationB cells, T cells, MacrophagesMucosalB cells, T cells, MacrophagesMucosalB cells, T cells, Plasma cellsT cell educationThymocytes, Epithelial

3. LIPID ABSORPTION AND TRANSPORT

Intestinal Fat Absorption:

- Lacteals: Specialized lymphatic capillaries in intestinal villi
- Chylomicron Transport: Carry dietary fats and fat-soluble vitamins
- Bypasses Portal Circulation: Directly enters systemic circulation
- Postprandial Changes: Lymph becomes milky (chyle) after fat-rich meals

Fat-Soluble Vitamin Transport:

- Vitamin A: Essential for vision and immune function
- Vitamin D: Important for calcium metabolism and bone health
- **Vitamin E:** Antioxidant protecting cell membranes
- Vitamin K: Required for blood clotting

Clinical Implications:

- Malabsorption: Lymphatic disorders can cause fat-soluble vitamin deficiencies
- Chylous Ascites: Lymphatic fluid accumulation in abdomen
- Protein-Losing Enteropathy: Loss of proteins through damaged lymphatics

4. PROTEIN HOMEOSTASIS 🧈

Protein Recovery:

- Plasma Protein Retrieval: Returns leaked albumin and globulins to circulation
- Maintains Oncotic Pressure: Prevents excessive fluid accumulation in tissues
- Enzyme Transport: Carries tissue enzymes back to circulation
- Hormone Clearance: Removes excess hormones from tissues

Protein Concentration Gradients:

- Higher protein concentration in lymph than interstitial fluid
- Varies by organ: liver lymph > intestinal lymph > peripheral lymph
- Important for maintaining vascular-interstitial fluid balance

5. WASTE REMOVAL AND DETOXIFICATION 🗸

Cellular Debris Clearance:

- **Dead Cell Removal:** Macrophages in lymph nodes eliminate cellular debris
- Foreign Particle Filtration: Removes dust, carbon particles, and other materials
- **Toxin Processing:** Helps eliminate bacterial toxins and metabolic waste
- Cancer Cell Surveillance: May trap and eliminate circulating cancer cells

Inflammatory Response:

- Mediator Transport: Carries inflammatory substances from sites of injury
- **Resolution of Inflammation:** Helps clear inflammatory debris
- **Tissue Repair:** Supports healing by removing damaged tissue components

6. MAINTENANCE OF TISSUE ENVIRONMENT 🔭

Tissue Pressure Regulation:

- **Hydrostatic Pressure:** Helps maintain optimal tissue pressure
- **Nutrient Distribution:** Ensures proper nutrient delivery to cells
- Waste Clearance: Removes metabolic products from tissue spaces
- **pH Balance:** Helps maintain tissue pH within normal ranges

Specialized Functions by Region:

Central Nervous System:

- **Glymphatic System:** Brain's lymphatic-like drainage system
- Cerebrospinal Fluid Clearance: Removes waste products from brain
- Amyloid Clearance: May help prevent neurodegenerative diseases

Skin and Subcutaneous Tissues:

- Thermal Regulation: Assists in temperature control
- Wound Healing: Supports tissue repair processes
- Infection Control: First line of defense against pathogens

CLINICAL SIGNIFICANCE OF LYMPHATIC DYSFUNCTION

Primary Lymphatic Disorders:

- Congenital Lymphedema: Malformed lymphatic vessels
- Lymphangiomatosis: Abnormal proliferation of lymphatic vessels
- Primary Immunodeficiencies: Defects in lymphoid organ development

Secondary Lymphatic Disorders:

- Post-Surgical Lymphedema: After lymph node removal
- Radiation-Induced Damage: From cancer treatment
- Infectious Lymphangitis: Bacterial infection of lymphatic vessels
- Malignant Obstruction: Tumors blocking lymphatic drainage

Assessment and Treatment:

• Lymphoscintigraphy: Nuclear imaging of lymphatic function

- **Compression Therapy:** External pressure to reduce swelling
- Manual Lymphatic Drainage: Specialized massage technique
- Surgical Options: Lymphaticovenous anastomosis, lymph node transfer

SUMMARY TABLE: COMPARISON OF BLOOD AND LYMPHATIC SYSTEMS

Feature	Blood System	Lymphatic System	
Circulation	Closed loop (heart → tissues	Open, one-way (tissues →	
	→ heart)	heart)	
Central Pump	Heart	None (multiple mechanisms)	
Fluid	Blood (plasma + cells)	Lymph (tissue fluid + cells)	
Vessels Ar	Arteries, veins, capillaries	Capillaries, vessels, trunks,	
		ducts	
Primary	Transport O ₂ , nutrients, waste	Fluid balance, immunity, fat	
Function	Transport O ₂ , numerits, waste	absorption	
Flow Rate	5L/minute (cardiac output)	2-4L/day (total lymph flow)	
Protein	7-8 g/dL	2-5 g/dL (varies by location)	
Content	7-0 g/uL		
Pressure	High (systolic/diastolic)	Low (near venous pressure)	
4	•	•	

© KEY LEARNING OBJECTIVES ACHIEVED

Upon completion of this unit, students should understand:

- **☑ Body Fluids:** Composition, distribution, and functions of body fluid compartments
- **☑ Blood:** Complete understanding of blood composition, functions, and formation processes
- ✓ Hemopoiesis: Process of blood cell formation and its regulation
- Hemoglobin: Structure, synthesis, and clinical significance
- Anemia: Types, causes, and pathophysiology of various anemias
- **Blood Coagulation:** Detailed mechanisms of blood clotting and its regulation
- Blood Groups: ABO and Rh systems, genetics, and clinical applications
- **Blood Transfusion:** Principles, compatibility, reactions, and safety measures
- RES: Structure and functions of the reticuloendothelial system
- **Lymphatic System:** Complete anatomy and physiology of lymphatic organs, vessels, and functions

This comprehensive coverage provides the foundation for understanding cardiovascular physiology, immunology, and hematology in advanced pharmaceutical sciences.